

USN BME301

Third Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Mechanics of Materials

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C		
Q.1	a.	Define the following terms:	04	L1	CO1		
		(i) Poisson's ratio (ii) Factor of safety					
	1_						
	b.	Show that the expression for the extension of uniformly tapering circular	06	L1	CO ₁		
		bar subjected to an axial load 'P' is given by, $\delta = 4PL/\pi d_1 d_2 E$					
	1		10	1.2	001		
	c.	A bar with stepped portion is subjected to the forces shown in Fig.Q1(c).	10	L3	CO ₁		
		Solve for the magnitude of force 'P' such that net deformation in the bar					
		does not exceed 1 mm. E for steel is 200 GPa and that of aluminium is					
		70 GPa. Big end diameter and small end diameter of the tapering bar are 40mm and 12.5mm respectively.					
		400 mm ² 2					
		4P 2P P 200 mm 3P					
		Aluminian Steel Steel					
		600mm 7 700mm 500mm					
		Fig.Q1(c)					
	1	OR					
Q.2	a.	How do you relate Modulus of Elasticity and Bulk modulus?	10	L1	CO1		
V.2	b.	Solve for the values of stress and strain in portion AC and CB of the steel	10	L3	CO1		
		bar shown in Fig.Q2(b). A close fit exists at both the rigid supports at room					
		temperature and the temperature is raised by 75°C. Take $E = 200$ GPa and					
		$\alpha = 12 \times 10^{-6}$ for steel. Area of cross-section of AC is 400 mm ² and of					
		BC is 800 mm ² .					
		cB					
		1. 0.3m 1. 0.8m					
		Fig.Q2(b)					
	Module – 2						
Q.3	a.	A rectangular bar is subjected to two direct stresses ' σ_x ' and ' σ_y ' in two	10	L1	CO2		
(mutually perpendicular directions. Show that the normal stress ' σ_n ' and					
		shear stress ' τ ' on an oblique plane which is inclined at an angle ' θ ' with					
		the axis of minor stress are given by					
		$\sigma_{n} = \frac{\sigma_{x} + \sigma_{y}}{2} + \frac{\sigma_{x} - \sigma_{y}}{2} \cos 2\theta \text{and} \tau = -\left(\frac{\sigma_{x} - \sigma_{y}}{2}\right) \sin 2\theta$					
	1						

	b.	The state of stress at a point in a stained material is shown in Fig.Q3(b).	10	L3	CO2
		Identify (i) Direction of principal planes (ii) Magnitude of principal			
		stresses (iii) Magnitude of maximum shear-stress and its direction.			
		140Nmu2			
		Cas Lugar			
		Goryman			
		1604			
		10 mm Jugar.			
		istorymic			
		Fig.Q3(b)			
		OR			
Q.4	a.	Show that the change in volume of thin cylindrical shell is given by	10	L1	CO2
		$\delta_{\rm V} = \frac{\rm Pd}{4 \rm FE} (5 - 4 \rm M) v$			
	1	4tE	10	T 2	COA
	b.	A pipe of 500 mm internal diameter and 75 mm thick is filled with a fluid	10	L3	CO ₂
		at a pressure of 6 N/mm ² . Solve for the maximum and minimum hoop			
		stress across the cross-section of the cylinder. Also construct the radial			
		pressure and hoop stress distribution sketch across the section.			
		, (Y			
		Module – 3			
Q.5	a.	Explain with sketches, the different types of loads acting on a beam.	10	L2	CO3
	b.	A cantilever beam carries UdL and point loads as shown in Fig.Q5(b).	10	L3	CO3
		Construct SFD and BMD.			
		ARION A LONG LO DIAN			
		12 m/m 1000			
		A			
		D B			
		lm 2m lm			
		Fig.Q5(b)			
	ı	OR	l		
Q.6	a.	Explain SFD and BMD for a cantilever beam with a uniformly varying	10	L2	CO3
Q.U	а.	load.	10	LL	COS
	h	An overhanging beam ABC is located as shown in Fig.Q6(b). Develop the	10	L3	CO3
	b.		10	L3	COS
		SFD and BMD. Also locate point of contraflexure.			
		2KN/M 8 1.			
		amminimmy .			
		4m 1 2m			
		Fig.Q6(b)			
	1	Module – 4	•		
Q.7	a.	Explain the assumptions made in simple bending and show that the	10	L2	CO4
		maximum transverse shear stress is 1.5 times the average shear stress in a			
		beam of a rectangular section.			
		Journ of a rootangular section.			
		V.			

	b.	The cross-section of a beam is as shown in Fig.Q7(b). If permissible stress	10	L4	CO4
	".	is 150 N/mm ² . Find its moment of resistance and compare it with	10	⊥ ⊿Ŧ	CO4
		equivalent section of the same area for a square section.			
		200mm			
		- COMM			
		IOMM()			
		400 mm			
		- DEMM			
		Fig.Q7(b)			
	1	OR	I		
Q.8	a.	Illustrate an expression for the bending stress and radius of curvature for a	10	L2	CO4
		straight beam subjected to pure bending.			
	b.	A 'T' shaped cross-section of a beam shown in Fig.Q8(b) is subjected to a	10	L4	CO4
		vertical shear force of 100 KN. Inspect the shear stress at the neutral axis			
		junction and flange. MI about the horizontal neutral axis is 0.0001134 m ⁴ .			
		1 H 200 MM H			
		50mm Somm			
		200 mm			
		-H50H-			
		Fig.Q8(b)			
		11g.Q0(0)			
		Module – 5			
Q.9	a.	Explain the assumptions made in pure torsion-theory and show that	10	L2	CO5
Q. ,	4.	-	10		003
		$\frac{T}{J_p} = \frac{\tau}{R} = \frac{G\theta}{L}$			
	b.	A hallow shaft having internal diameter 40% of its external diameter,	10	L4	CO ₅
		transmits 562.5 KW power at 100 rpm. List the internal and external			
		diameters of the shaft if the shear stress is not to exceed 60 N/mm ² and the			
		twist in a length of 2.5m should not exceed 1.3 degrees. The maximum			
		torque being 25% greater than mean. $G = 9 \times 10^4 \text{ N/mm}^2$.			
	_	OR .	I -		
Q.10	a.	Show the variation of Euler's critical load with slenderness ratio. Explain	10	L2	CO ₅
		the limitations of Euler's theory and mention for formulae to overcome			
	-	these limitations.			~ ~ -
	b.	A 1.5 m long column has a circular cross-section of 50 mm diameter. One	10	L4	CO ₅
		end of the column is fixed in direction and position and the other end is			
		free. Taking the factor of safety as 3, analyze the safe load using			
		(i) Rankine's formula taking yield stress 560 N/mm ² and $\alpha = 1/1600$.			
		(i) Rankine's formula taking yield stress 560 N/mm ² and $\alpha = 1/1600$. (ii) Euler's formula, taking $E = 1.2 \times 10^5 \text{ N/mm}^2$.			

* * * * *