

USN											
-----	--	--	--	--	--	--	--	--	--	--	--

BCS/BAD/BAI/BDS301

Third Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Mathematics – III for Computer Science Stream

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. VTU Mathematics Hand Book is permitted.

3. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	A random variable x has the following prob. density function for various	07	L2	CO1
		values of x.			
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
		Find the value of k and evaluate $P(x < 6)$, $P(3 < x \le 6)$ and $(x \ge 6)$.			
		This the value of K and evaluate $I(X < 0)$, $I(S < X \ge 0)$ and $(X \ge 0)$.			
	b.	Derive the mean and variance of Poisson distribution.	06	L2	CO2
	c.	In a certain town the duration of a shower is exponentially distributed with	07	L3	CO2
		mean 5 minutes. What is the probability that a shower will last for?			
		(i) less than 10 minutes (ii) more than 10 minutes and (iii) between 10 and 12 minutes.			
		OR			
Q.2	a.	The probability density function of	07	L3	CO1
		$f(x) = \begin{cases} Kx^2, & -3 < x < 3 \\ 0, & \text{elsewhere} \end{cases}$			
		Find the value of K and evaluate (i) $P(x < 2)$, $P(x > 1)$ (ii) $P(1 \le x \le 2)$			
	b.	When a coin is tossed 4 times, find the probability of getting (i) exactly	06	L2	CO2
		one head (ii) atleast three heads and (iii) less than two heads.			
	c.	The marks of 1000 students in an examination follows a normal distribution	07	L2	CO2
		with mean > 0 and S.D 5. Find the number of students whose marks will be			
		(i) less than 65 (ii) more than 75 and (iii) between 65 and 75.			
		Module – 2			
Q.3	a.	If the joint probability distribution of x and y is given by	07	L2	CO2
		$f(y, y) = \frac{1}{y}(y+y)$ for $y = 0, 1, 2, 3, y = 0, 1, 2$			
		$30^{(X+Y)}$, 101 X 0, 1, 2, 3, Y 0, 1, 2			
		$f(x, y) = \frac{1}{30}(x + y), \text{ for } x = 0, 1, 2, 3 ; y = 0, 1, 2$ Find (i) $P(x \le 2, y = 1)$ (ii) $P(x > y)$			
	1		0.0	τ 2	002
	D.	Find the unique fixed probability vector of	06	L2	CO3
		$P = \begin{bmatrix} 0 & 1 & 0 \\ 1/6 & 1/2 & 1/3 \\ 0 & 2/3 & 1/3 \end{bmatrix}$			
		$P = \begin{bmatrix} 1/6 & 1/2 & 1/3 \end{bmatrix}$			
	c.	Three boys A, B and C are throwing a ball to each other. A always throw	07	L3	CO3
		the ball to B. B always throw the ball to A and C is just as likely to throw			
		the ball to A as to B. Find the probability that C has the ball after three			
		throws, if C starts the game.			

BCS/BAD/BAI/BDS301

		OR			
Q.4	a.	The joint prob. distribution for the following data, find $E(x)$ and $E(y)$.	07	L2	CO2
		Y -2 -1 4 5			
		1 0.1 0.2 0.0 0.3			
		2 0.2 0.1 0.1 0			
	b.	Show that the matrix	06	L2	CO3
		$P = \begin{pmatrix} 1/2 & 0 & 1/2 \end{pmatrix}$ is a regular stochastic matrix			
		$P = \begin{vmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \end{vmatrix}$ is a regular stochastic matrix.			
	c.	A gambler's luck follows pattern. If he wins a game the prob. of winning	07	L3	CO ₃
		the next game is 0.6. However, if he loses a game, the prob. of losing the			
		next game is 0.7. There is an even chance of the gambler winning the first			
		game. What is the prob. of he winning the second game.			
		M. I. I. Z.			
0.5		Module – 3 Define (i) Novil home thesis (ii) A statistic (iii) Standard array (iv) Level	07	T 4	CO4
Q.5	a.	Define (i) Null hypothesis (ii) A statistic (iii) Standard error (iv) Level	07	L1	CO4
	h	of significance (v) Test of significance.	06	L3	CO4
	b.	A coin was tossed 400 times and head turned up 216 times. Test the hypothesis that the coin is unbiased at 5% LOS.	00	L3	CO4
	c.	In a city A 20% of a random sample of 900 school boys had a certain slight	07	L3	CO5
	۲.	physical defect. In another city B, 18.5% of a random sample of 1600	07	LJ	COS
		school boys had the same defect. Is the difference between the proportions			
		significant at 5% significance level?			
		OR	1		
Q.6	a.	Explain the following terms:	07	L1	CO4
		(i) Type-I and Type-II errors			
		(ii) Statistical hypothesis			
		(iii) Critical region			
		(iv) Alternate hypothesis			
	b.	The average marks in Engg. Maths of a sample of 100 students was 51 with	06	L2	CO5
		S.D 6 marks. Could this have been a random sample from a population with			
		average marks 50?			~~.
	c.	One type of aircraft is found to develop engine trouble in 5 flights out of a	07	L3	CO ₄
		total of 100 and another type in 7 flights out of a total of 200 flights. Is			
		there a significance difference in the two types of aircrafts so far as engine			
		defects are concerned? Test at 0.05 significance level. Module – 4	<u> </u>		
Q.7	a.	State central limit theorem. Use the theorem to evaluate $P(50 < x < 56)$	07	L2	CO4
Q. ,	a.	where \bar{x} represents the mean of a random sample of size 100 from an	07		COT
		infinite population with mean $\mu = 53$ and variance $\sigma^2 = 400$.			
	b.	Suppose that 10, 12, 16, 19 is a sample taken from a normal population	06	L2	CO5
	ν.	with variance 6.25. Find 95% confidence interval for the population mean.	"	112	003
		Given that $Z(0.15) = 0.0596$.			
	c.	Fit a Poisson distribution to the following data and test for goodness of fit	07	L3	CO5
		at 5% LOS.	-		
		x 0 1 2 3 4			
		f 419 352 154 56 19			
	-				

BCS/BAD/BAI/BDS301

		OR			
Q.8	a.	Height of a random sample of 50 college student showed a mean of	07	L2	CO4
~. 0		174.5 cms and a S.D 6.9 cms. Construct 99% confidence limits for the	0,		
		mean height of all college students.			
	b.	A random sample of 10 boys had the following 1.Q: 70, 120, 110, 101, 88,	06	L3	CO5
	~.	83, 95, 98, 107, 100. DO these data support the assumption of a		Lo	
		population mean I.Q of 100 (at 5% LOS)?			
	c.	The theory predicts the propositions of beans in the four groups, G_1 , G_2 ,	07	L3	CO5
		G_3 , G_4 should be in the ratio $9:3:3:1$. In experiment with 1600 beans	0,	Lo	
		the numbers in the groups were 882, 313, 287 and 118. Does the			
		experimental support the theory.			
	ı	Module – 5			l .
Q.9	a.	The varieties of wheat A, B, C were shown in four plots each and the	10	L3	CO6
Q. ,	a.	following yields in quintals per acre were obtained.	10	Lo	
		A 8 4 6 7			
		B 7 6 5 3			
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
		Test the significance of difference between the yields of varieties, given			
		that 5% tabulated value of $F = 4.26$ with $(2, 9)$ d.f. Set up one-way			
		ANOVA and using direct method.			
	b.	Present your conclusion after doing ANOVA to the following results of the	10	L3	CO6
	D.	Latin-square design conducted in respect of five fertilizers which were used	10	L3	COU
		on plots of different fertility.			
		A(16) B(10) C(11) D(9) E(9)			
		E(10) $C(9)$ $A(14)$ $B(12)$ $D(11)$			
		B(15) D(8) E(8) C(10) A(18)			
		D(12) $E(6)$ $B(13)$ $A(13)$ $C(12)$			
		C(13) $A(11)$ $D(10)$ $E(7)$ $B(14)$			
	ı	OR			
Q.10	a.	Set up two-way ANOVA table for the data given below, using coding	10	L3	CO6
		method subtracting 40 from the given numbers.			
		Treatment			
		Pieces of land A B C D			
		P 45 40 38 37			
		Q 43 41 45 38			
		R 39 39 41 41			
		1			
	b.	There are three main brands of a certain power. A set of its 120 sales is	10	L3	CO6
		examined and found to be allocated among four groups (A, B, C, D) and			
		brands (I, II, III) as follows:			
		Groups			
		Brands A B C D			
		I 0 4 8 15			
		II 5 8 13 6			
		III 18 19 11 13			
		Is there any significant difference in brands preference? Answer at 5%			
		level, using one-way ANOVA. Take 10 as the code value to subtract it			
		from all given values.			
	1	1 Br. 1-17 1	l .		<u> </u>

* * * * *