

HON					
USIN					

BMATS201

Second Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Mathematics – II for CSE Stream

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. VTU Formula Hand Book is permitted.

3. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	Evaluate $\int_{-c}^{c} \int_{-b}^{b} \int_{-a}^{a} (x^2 + y^2 + z^2) dz dy dx$	07	L2	CO1
	b.	Prove that $\beta(m,n) = \frac{\boxed{m \cdot \boxed{n}}}{\boxed{(m+n)}}$	07	L2	CO1
	c.	Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dy dx$ by changing to polar coordinates.	06	L3	CO1
	1	OR	1		
Q.2	a.	Evaluate $\int_{0}^{4a} \int_{\frac{x^2}{4a}}^{2\sqrt{ax}} xy dy dx$ by change the order of integration.	07	L2	CO1
	b.	Show that $\int_{0}^{\pi/2} \frac{d\theta}{\sqrt{\sin \theta}} \times \int_{0}^{\pi/2} \sqrt{\sin \theta} d\theta = \pi$	07	L2	CO1
	c.	Write a program to find the volume of the tetrahedron bounded by the planes $x = 0$, $y = 0$, $z = 0$, $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$.	06	L3	CO5
		Module – 2			
Q.3	a.	Find the directional derivative of $\phi = 4xz^3 - 3x^2y^2z$ at the point $(2, -1, 2)$ along $2\hat{i} - 3\hat{j} + 6\hat{k}$.	07	L2	CO2
	b.	Find the value of the constants a, b, c such that $\vec{F} = (x + y + az)\hat{i} + (bx + 2y - z)\hat{j} + (x + cy + 2z)\hat{k}$ is irrotational.	07	L2	CO2
	c.	Show that the cylindrical co-ordinate system is orthogonal.	06	L3	CO2
	<u> </u>	OR	<u> </u>		
Q.4	a.	Find the value of the constants 'a' such that the vector field, $\vec{F} = (axy - z^3)\hat{i} + (a-2)x^2\hat{j} + (1-a)xz^2\hat{k}$ is irrotational.	07	L2	CO2
	b.	Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at the point $(2, -1, 2)$.	07	L2	CO2
	c.	Write a program to verify whether the following vectors (2, 1, 5, 4) and (3, 4, 7, 8) are orthogonal.	06	L3	CO5

		Module – 3			
Q.5	a.	Express the matrix $A = \begin{bmatrix} 3 & -1 \\ 1 & -2 \end{bmatrix}$ in the vector spaces of 2×2 matrices as	07	L2	CO3
		a linear combination of $B = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix}$, $D = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$			
	b.	Determine whether the vectors $V_1 = (1, 2, 3)$, $V_2 = (3, 1, 7)$ and $V_3 = (2, 5, 8)$ are linearly dependent or linearly independent.	07	L2	CO3
	c.	Verify the rank nullity theorem for the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T(x, y, z) = (x + 2y - z, y + z, x + y - 2z)$	06	L3	CO3
	1	OR	1	I	I
Q.6	a.	Let W be the subspace of R ⁵ spanned by $x_1 = (1, 2, -1, 3, 4)$, $x_2 = (2, 4, -2, 6, 8)$, $x_3 = (1, 3, 2, 2, 6)$, $x_4 = (1, 4, 5, 1, 8)$ and $x_5 = (2, 7, 3, 3, 9)$. Find a subset of vectors which forms a basis of W.	07	L2	CO3
		Find a subset of vectors which forms a basis of W.			
	b.		07	L2	CO3
		f(t) = t + 2, g(t) = 3t - 2 h(t) = $t^3 - 2t - 3$ and <f, g=""> = $\int_0^x f(t)g(t) dt$. (i) Find <f, g=""> and <f, h=""> (ii) Find f and g</f,></f,></f,>			
	c.	If V is a vector space of polynomials over R. Find a basis and dimension of the subspaces W and V, spanned by the polynomials. $x_1 = t^3 - 2t^2 + 4t + 1 , x_2 = 2t^3 - 3t^2 + 9t - 1 \\ x_3 = t^3 + 6t - 5 , x_4 = 2t^3 - 5t^2 + 7t + 5$	06	L2	CO3
0.5	1	Module – 4	0.7	1.0	604
Q.7	a.	Find the real root of the equation $x \log_{10} x - 1.2 = 0$ by Regular Falsi method. Correct to four decimal places.	07	L2	CO4
	b. From the following table find the number of students who have obtained less than 45 marks. Marks 30 - 40 40 - 50 50 - 60 60 - 70 70 - 80 No. of students 31 42 51 35 31			L2	CO4
	c.	Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ by using Simpson's $(1/3)^{rd}$ rule taking four equal strips.	06	L3	CO4
		OR	1		
Q.8	a.	Fit the polynomial for the following data using Newton's divided difference formula and hence find f(3). x 2 4 5 6 8 10	07	L2	CO4
		x 2 4 5 6 8 10 y 10 96 196 350 868 1746			
	b.	Using Lagrange's interpolation formula find f(4). x 0 2 3 6 y -4 2 14 158	07	L2	CO4

BMATS201

Q.8	c.	Use Simpson's $(3/8)^{th}$ rule to evaluate $\int_{1}^{4} e^{1/x} dx$ by taking four ordinates.	06	L3	CO4
		Module – 5			
Q.9	a.	Employ Taylor's series method to solve the initial value problem	07	L2	CO4
•		$\frac{dy}{dx} = x - y^2; y(0) = 1 \text{ at the point } x = 0.1 \text{ by considering upto } 4^{th} \text{ degree}$			
		terms.			
	b.	Apply Milne's method to compute y(1.4) for the differential equation	07	L2	CO4
		$\frac{dy}{dx} = x^2 + \frac{y}{2}$, given that $y(1) = 2$, $y(1.1) = 2.2156$, $y(1.3) = 2.4649$ and			
		y(1.3) = 2.7514 correct to four decimal places.			
	c.	Use fourth order Runge Kutta method to find the value of y at $x = 0.1$, given that	06	L2	CO4
		$\frac{dy}{dx} = 3e^x + 2y$, $y(0) = 0$ and $h = 0.1$.			
Q.10	a.	Use Modified Euler's method to compute y(0.1), given that	07	L2	CO4
Q.1 0		$\frac{dy}{dx} = x^2 + y$; y(0) = 1 by taking h = 0.05.	07	112	
			07	L2	CO4
	b.	If $\frac{dy}{dx} = 2e^x - y$; $y(0) = 2$, $y(0.1) = 2.010$, $y(0.2) = 2.040$ and $y(0.3) = 2.090$. Find the value of y at $x = 0.4$ correct to four decimal places by applying Milne's predictor and corrector method.	U7	LZ	CO4
		dy	06	L3	CO5
	c.	Write a program to solve: $\frac{dy}{dx} - 2y = 3e^x$ with $y(0) = 0$ using Taylor's		LU	
		series method at $x_1 = 0.1$, $x_2 = 0.2$ and $x_3 = 0.3$.			
		3 of 3			
		X*			