# First/Second Semester B.E. Degree Examination, Dec.2019/Jan.2020 Elements of Civil Engineering and Mechanics

Time: 3 hrs.

Max. Marks: 80

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. Missing data suitably be assumed.

Module-1

1 a. Explain briefly the role of civil engineers in the infrastructure development of a country.

b. Draw typical cross section of a road and explain its components. (06 Marks) (06 Marks)

c. A 100N vertical force is applied to the end of a lever which is attached to a shaft as shown in Fig.Q.1(c). Determine:

i) Moment of force about 'O'

ii) The horizontal force applied at 'A' which creates same moment about 'O'. (04 Marks)



OR

2 a. Reduce the system in Fig.Q.2(a) to

i) Single force

ii) Single force and couple at A

iii) Single force and couple at B

(06 Marks)



b. Define couple. Explain its characteristics.

(04 Marks)

Distinguish between Gainty Dam and Earthen Dam.

(06 Marks)

### Module-2

3 a. State and prove parallelogram law of forces.

es.

b. State the laws of static friction.

(06 Marks) (04 Marks)

1 of 3

2. Any revealing of identification, appeal to evaluator and /or equations written eg. 42+8 = 50, will be treated as malpractice Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

c. Four coplanar forces acting at a point are as shown in Fig.Q.3(c). One of the forces is unknown and its magnitude is as shown by 'F'. The resultant is 500N and is along x-axis. Determine the force 'F' and its inclination  $\theta$  with x-axis. (06 Marks)



OR

4 a. State and prove Lami's theorem.

(04 Marks)

b. Determine the reactions at the point of contact for the sphere shown in Fig.Q.4(b). (04 Marks)



c. Determine the force P required to cause motion of blocks to impend. Take the weight of A as 90N and weight of B as 45N. Take the coefficient of friction for all contact surfaces as 0.25. Consider the pulleys as frictionless (Fig.Q.4(c)). (08 Marks)



#### Module-3

5 a. State and prove Varignon's theorem.

(06 Marks)

b. Find the reactions for the beam supported and loaded as shown in Fig.Q.5(b).

(10 Marks)



(06 Marks)

### OR

- Explain different type of supports with sketches and reactions.
  - Determine the resultant of the four forces acting on a frame as shown in Fig.Q6(b) with (10 Marks) respect to point 'O'.



## Module-4

- Derive an expression for the centroid of semicircle with respect to base.
  - Compute the Radii of gyration about its centroidal axes Fig.Q.7(b).

(06 Marks)

(10 Marks)

### OR

Derive an expression for the moment of inertia of a quadrant about its centroidal axes. 8

(08 Marks) (08 Marks)

Determine the position of centroid with respect to 'O' shown in Fig.Q.8(b).

20 mm



### Module-5

- What is Pojectile? Define the following term briefly: i) Angle of projection ii) Horizontal iii) Vertical height and iv) Time of flight. range (08 Marks)
  - A stone is thrown vertically upward from the top of tower 20m high with a velocity of 15m/s. Find: i) The highest elevation reached by the store ii) The time required for the stone to cross the top of tower during its downward motion and corresponding velocity.

(08 Marks)

### OR

10 a. What is super elevation? What is its purpose?

(04 Marks)

- The particle moves along a curve of characteristic  $x = 0.65y^2$ . Its value of motion is  $x = 4r^2$ at the instant when t = 3s. Determine: i) The displacement of particle from origin ii) The velocity of particle iii) The acceleration of particle. (06 Marks)
- c. The acceleration of a particle is defined by  $a = -3m/s^2$  if V = 9m/s and V = 9m/s and x = 0 when t = 0. Determine: i) Velocity ii) Distance travelled at t = 9s. (06 Marks)

\* \* \* \* \*