17MAT11

First Semester B.E. Degree Examination, June/July 2019 Engineering Mathematics – I

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Find the nth derivative of sin 2x sin 3x.

(06 Marks)

b. Find the angle between the two curves $r = \frac{a}{1 + \cos \theta}$ and $r = \frac{b}{1 - \cos \theta}$

(07 Marks)

c. Find the radius of curvature for the curve $x^3 + y^3 = 3xy$ at (3/2, 3/2).

(07 Marks)

OR

2 a. If $y = \cos(m \log x)$ then prove that $x^2y_{n+2} + (2n+1)xy_{n+1} + (m^2 + n^2)y_n = 0$. (06 Marks)

(07 Marks)

b. With usual notation prove that $\tan \phi = r \frac{d\theta}{dr}$.

(07 Marks)

c. Find the pedal equation of the curve $r^m = a^m \cos m\theta$.

Module-2

3 a. Find the Taylor's series of $\log(\cos x)$ in powers of $(x - \pi/3)$ upto fourth degrees terms.

(06 Marks)

b. If $u = \tan^{-1} \left(\frac{x^3 + y^3}{x + y} \right)$ then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$ by using Euler's theorem. (07 Marks)

c. If $u = \frac{yz}{x}$, $v = \frac{xz}{y}$, $w = \frac{xy}{z}$ then find $J = \frac{\partial (uvw)}{\partial (xyz)}$.

(07 Marks)

OR

4 a. Evaluate $\lim_{x \to 0} \left(\frac{\tan x}{x} \right)^{\frac{1}{x^2}}$.

(06 Marks)

b. Using Maclaurin's series, prove that $\sqrt{1 + \sin 2x} = 1 + x - \frac{x^2}{|2|} - \frac{x^3}{|3|} + \frac{x^4}{|4|} - + - - - .$ (07 Marks)

c. If u = f(2x - 3y, 3y - 4z, 4z - 2x) then prove that $\frac{1}{2} \frac{\partial u}{\partial x} + \frac{1}{3} \frac{\partial u}{\partial y} + \frac{1}{4} \frac{\partial u}{\partial z} = 0$. (07 Marks)

Module-3

5 a. A particle moves along the cuvre $\vec{r} = (t^3 - 4t)\hat{i} + (t^2 + 4t)\hat{j} + (8t^2 - 3t^3)\hat{k}$. Find the components of velocity and acceleration in the direction of $\hat{i} - 3\hat{j} + 2\hat{k}$ at t = 0. (06 Marks)

b. Find the constant a and b such that $\vec{F} = (axy + z^3)\hat{i} + (3x^2 - z)\hat{j} + (bxz^2 - y)\hat{k}$ is irrotational and find scalar potential function ϕ such that $\vec{F} = \nabla \phi$. (07 Marks)

c. Prove that $curl(\phi \vec{A}) = \phi curl \vec{A} + grad\phi \times \vec{A}$.

(07 Marks)

6 a. Show that vector field
$$F = \frac{x \hat{i} + y \hat{j}}{x^2 + y^2}$$
 is both solenoidal and irrotational. (06 Marks)

b. If
$$\vec{F} = (x + y + 1) \vec{i} + \vec{j} - (x + y) \vec{k}$$
 then prove that $\vec{F} = \text{curl } \vec{F} = 0$. (07 Marks)

c. Show that
$$\operatorname{div}(\operatorname{curl} \vec{A}) = 0$$
. (07 Marks)

Module-4

7 a. Obtain reduction formula for
$$\int \sin^n x \, dx (n > 0)$$
. (06 Marks)

b. Solve the differential equation
$$\frac{dy}{dx} + y \cot x = \cos x$$
. (07 Marks)

c. Find the orthogonal trajectory of the curve
$$r = a(1 + \sin \theta)$$
. (07 Marks)

OR

8 a. Evaluate
$$\int_{0}^{\frac{\pi}{2}} \sin^{7}\theta \cos^{6}\theta \,d\theta.$$
 (06 Marks)

b. Solve the differential equation: $(2xy + y - \tan y)dx + (x^2 - x \tan^2 y + \sec^2 y)dy = 0$.

(07 Marks)

c. If the temperature of air is 30°C and the substance cools from 100°C to 70°C in 15 mins. Find when the temperature will be 40°C. (07 Marks)

9 a. Find the rank of the matrix
$$\begin{bmatrix} 1 & 1 & 1 & 6 \\ 1 & -1 & 2 & 5 \\ 3 & 1 & 1 & 8 \\ 2 & -2 & 3 & 7 \end{bmatrix}$$
 by reducing to Echelon form. (06 Marks)

- b. Find the largest eigen value and egien vector of the matrix : $\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ by taking initial
- vector as $[1\ 1\ 1]^T$ by using Rayleigh's power method. Carry out five iteration. (07 Marks) c. Reduce $8x^2 + 7y^2 + 3z^2 12xy + 4xz 8yz$ into canonical form, using orthogonal transformation. (07 Marks)

OR

10 a. Solve the system of equations

$$10x + y + z = 12$$

 $x + 10y + z = 12$
 $x + y + 10z = 12$

by using Gauss-Seidel method. Carry out three iterations.

(06 Marks)

b. Diagonalise the matrix
$$A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$$
. (07 Marks)

c. Show that the transformation

$$y_1 = x_1 + 2x_2 + 5x_3$$

 $y_2 = 2x_1 + 4x_2 + 11x_3$
 $y_3 = -x_2 + 2x_3$

is regular. Write down inverse transformation.

(07 Marks)