

Sixth Semester B.E. Degree Examination, Dec.2017/Jan.2018 Advanced Power Electronics

Time: 3 hrs. Max. Marks:100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

- 1 a. With a neat circuit and wave form, explain the operation of 'CUK' converter. Find the ratio of output current to input current. (10 Marks)
 - b. A Boost regulator has an input voltage of $V_s = 5V$. The average output voltage is $V_a = 15V$ and the average load current $I_a = 0.5A$. The switching frequency is 25 KHz. If $L = 150 \times 10^{-6} \text{H}$ and $C = 220 \times 10^{-6} \text{F}$, determine:
 - i) The duty cycle(k), ii) the ripple current of inductor iii) the peak current of inductor iv) the output ripple voltage. (10 Marks)
- a. Discuss the working of Boost converter for continuous conduction mode with the help of circuit diagram and relevant waveforms. Also derive its voltage and current transformation ratio.
 - b. The buck DC-DC converter has the following parameters $V_S = 50V$, D = 0.4, $L = 400 \times 10^{-6} H$, $C = 100 \times 10^{-6} F$, f = 20 KHz, $R = 20\Omega$. Assuming ideal components, calculate: i) the output voltage ii) the maximum inductor current iii) the minimum inductor current and iv) the output voltage ripple. (10 Marks)
- a. Describe the working of buck-boost converter for continuous conduction mode with the help of relevant circuit and waveforms. Also derive voltage and current transformation ratio in terms of duty cycle.
 - b. The Buck Boost regulator has an input voltage of $V_S = 12V$ the duty cycle K = 0.25 and the switching frequency is 25 KHz the inductance $L = 150 \times 10^{-6}H$ and the filter capacitance $C = 220 \times 10^{-6}F$. The average load current $I_a = 1.25A$. Determine:
 - i) The average output voltage (V_0)
 - ii) Peak to peak output voltage ripple (ΔV_0)
 - iii) Peak to peak ripple inductor current (ΔI_L)
 - iv) Peak current of transistor (I_P).

(10 Marks)

- 4 a. With a neat circuits, explain the operations of single phase half bridge and full bridge inverters.

 (10 Marks)
 - b. Explain the operation of three phase inverter consisting of three legs.

(05 Marks)

c. In a single phase full-bridge PWM inverter, V_d varies in a range of 295 – 325V. The output voltage is required to be constant at 200V(rms) and the maximum load current is 10A(rms). Calculate the combined switch utilization ratio. (05 Marks)

PART - B

- 5 a. With a neat snubber circuit and switching loci, explain the operation of zero voltage and zero current switchings. (10 Marks)
 - b. Explain different modes of operation of zero voltage switching (ZVS) resonant switch converter with relevant circuits and waveforms. (10 Marks)

6 a. Explain the step by single pass algorithm for the design of high frequency inductor.

(10 Marks)

- b. Give the steps involved in single pass algorithm for the design of high frequency transformer used with SMPS. (10 Marks)
- 7 a. Explain the operation of push-pull converter with relevant circuit and waveform. Also derive its voltage transformation ratio in terms of duty cycle. (10 Marks)
 - b. Explain the operation of full bridge DC DC converter with neat circuit and waveform.

 (10 Marks)
- 8 a. Derive the voltage and current transformation ratio for a flyback converter with the help of neat circuit and waveforms. (10 Marks)
 - b. What are the types of AC power supplies? With a block diagram clearly. Explain 'UPS' configuration with load normally connected to AC main supply. (10 Marks)