USN

First Semester M.Tech. Degree Examination, June/July 2016 Continuum Mechanics

Time: 3 hrs.	Max. Marks: 100

Note: Answer any FIVE full questions.

- 1 a. The state of stress at a point is known by $\sigma_x = 100 \text{MPa}$, $\sigma_y = 40 \text{MPa}$, $\sigma_z = 80 \text{MPa}$, $\tau_{xy} = \tau_{xz} = 0$. Determine the extreme values of he shear stresses their associated normal stresses, the octahedral shear stress and its associated normal stress. (10 Marks)
 - b. Explain: i) invariants of stress ii) octahedral stress.

(10 Marks)

2 a. The displacement field is given by: $u = K(x^2 + 2z)$; $v = K(4x + 2y^2 + z)$ $w = 4kz^2$ where 'K' is very small constant. What are the strains at (2, 2, 3) in directions.

i)
$$\ell = 0$$
; $m = n = 1/\sqrt{2}$ ii) $\ell = 1$; $m = n = 0$ iii) $\ell = 0.6$, $m = 0$, $n = 0.8$. (10 Marks)

- b. Derive the compatibility equation in terms of strains and displacements. (10 Marks)
- 3 a. The state of strain at a point is given by $\epsilon_x = 0.001$, $\epsilon_y = -0.003$; $\epsilon_z = \gamma_{xy} = 0$ $\gamma_{xz} = 0.004$; $\gamma_{yz} = -0.001$.

 Determine the stress tensor at this point. Take $E = 210 \times 10^6 \text{ kN/m}^2$, Poisson's ratio = 0.28 also find Lam's constant. (12 Marks)
 - b. State and explain the following:
 - i) St. Venant's principle
 - ii) Principle of super position.

(08 Marks)

- 4 a. Using Airy's stress function, determine bending stress of a rectangular beam of length '\(\extstyle\)' width '2b' depth 'b' subjected to a pure couple 'M' along its length. (14 Marks)
 - b. Write a note on plane stress and plane strain problem.

(06 Marks)

- 5 a. Derive the expression for radial and tangential stress in their cylinder subjected to a internal and external fluid pressure 9Take only plane stress case). (14 Marks)
 - b. Explain as symmetric problems with examples.

(06 Marks)

- **6** a. Briefly explain the following:
 - i) Von mises yield criteria ii) Tresca criteria

(10 Marks)

- b. Write a note on:
 - i) Strain hardening hypothesis ii) plastic potential theory.

(10 Marks)

7 a. With a neat sketch, explain "Visco elastic modules".

With a neat sketch, explain creep and relaxation pertaining to viscodensity.

(10 Marks) (10 Marks)

- **8** Write a short notes on
 - a. Viscous stress leister

(06 Marks)

b. Kelvin's theorem

(06 Marks)

c. Law of conservations of energy.

(08 Marks)