

Seventh Semester B.E. Degree Examination, Dec.2015/Jan.2016 **Power Electronics**

Time: 3 hrs.

Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. Give symbol, characteristic features of the following devices: GTO, TRIAC, MOSFET, UJT, SCR

(10 Marks)

- b. Explain briefly the different types of thyristor power converters and mention two applications of each. (10 Marks)
- 2 a. With the necessary waveforms, explain the switching characteristics of a power transistor.
 (08 Marks)
 - b. Give the comparison between MOSFET and IGBT.

(06 Marks)

- c. The collector clamping circuit of Fig. Q2 (c) has $V_{CC} = 100$ V, $R_{C} = 1.5$ Ω , $V_{d_1} = 2.1$ V, $V_{d_2} = 0.9$ V, $V_{BE} = 0.7$ V, $V_{B} = 15$ V and $R_{B} = 2.5$ Ω and $\beta = 16$. Calculate
 - i) the collector current without clamping.
 - ii) the collector-emitter clamping voltage V_{CE}.
 - iii) the collector current with clamping.

(06 Marks)

Fig. Q2 (c)

- 3 a. Define the following: i) latching current ii) holding current iii) I²t rating Derive expression for Anode current using two-transistor model in case of SCR. (10 Marks)
 - b. What is the need for protection of thyristor? Explain how thyristors are protected against high $\frac{di}{dt}$ and high $\frac{dv}{dt}$. (06 Marks)
 - c. A SCR has a $\frac{di}{dt} = 120 \text{ A/}\mu\text{s}$ and a $\frac{dv}{dt}$ of 300 V/ μ s. It operates on a 250 V DC source with a load resistance of 10 Ω . Find the suitable values for the components of the snubber circuit. (04 Marks)
- 4 a. Explain the working of single phase dual converter with neat circuit diagram. Draw relevant waveforms. (10 Marks)
 - b. Explain the working of single phase semiconvert with neat circuit and waveforms. Derive expression for the average output voltage. (06 Marks)
 - c. A single phase full converter supplies an RLE load from a 230 V, 50 Hz supply. The load is highly inductive, so that load current is continuous and ripple free. If $R=1~\Omega$ and the load current is $I_0=10A$. Calculate the delay angle α for E=120. (04 Marks)

PART - B

- 5 a. Explain the operation of a single phase bidirectional controller with resistive load. Obtain the expression for rms output voltage. Show the waveforms. (10 Marks)
 - b. A single phase full wave AC voltage controller has an RL load. The input voltage is 230 V, 50 Hz and the load is R = 2 Ω and $X_L = 2 \Omega$, $\alpha_1 = \alpha_2 = \frac{\pi}{2}$. Calculate the following:
 - i) Angle until which the thyristor conducts.
 - ii) Conduction angle of thyristor.
 - iii) RMS voltage of output.

(06 Marks)

- c. What are the advantages and disadvantages of ON-OFF control and phase control of ac voltage controller? (04 Marks)
- 6 a. Explain the resonant pulse commutation with neat circuit and waveforms. (10 Marks)
 - b. Explain the working of complementary commutation circuit. Draw relevant waveforms. Derive expression for $t_{\rm off}$. (06 Marks)
 - c. In the circuit of Fig. Q6 (c) the capacitor is initially charged to a voltage of $V_C(0) = -500$ V. If L = 15 μ H and C = 50 μ F and the SCR is turned ON at t = 0. Calculate (i) the peak value of resonant current and (ii) the conduction time of thyristor. (04 Marks)

Fig. Q6 (c)

- 7 a. Give the classification of chopper. Explain briefly each one of them. (10 Marks)
 - b. Explain the principle of operation of a step up chopper.

(06 Marks)

- c. A dc chopper has an input voltage of 200 V and a load of 8 Ω resistance. The voltage drop across thyristor is 2 V and the chopper frequency is 800 Hz. The duty cycle K = 0.4. Find
 - i) Average output voltage
 - ii) RMS output voltage
 - iii) Chopper efficiency.

(04 Marks)

8 a. Explain the performance parameters of inverters.

(06 Marks)

b. Explain the working of transistorized current source inverter.

- (08 Marks)
- c. Calculate the rms values of the fundamental and the two lower order harmonics of a single-phase full bridge inverter employing single-pulse width modulation for output voltage control. The modulation index is 80% and the dc input voltage is 230 V. (06 Marks)

* * * * *