

USN		0E
USIN	1	

Seventh Semester B.E. Degree Examination, June/July 2015 Power Electronics

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

- 1 a. What is power electronics? State the applications of power electronics. (06 Marks)
 - b. Give symbol, characteristics features of the following devices:

) IGBT ii) TRIAC iii) GTO iv) MCT. (08 Marks)

- c. What are the peripheral effects of power electronic equipments and mention the remedies.

 (06 Marks)
- 2 a. Compare IGBT, MOSFET and BJT's. (04 Marks)
 - b. What is the need of a base drive control in a power transistor? Explain proportional and antisaturation control. (08 Marks)
 - c. With the necessary waveforms, explain the switching characteristics of a power MOSFET.

 (08 Marks)
- 3 a. Explain the two transistor model of SCR and derive the formula

$$I_{A} = \frac{\alpha_{2}I_{G} + I_{CBO_{1}} + I_{CBO_{2}}}{1 - (\alpha_{1} + \alpha_{2})}.$$
 (06 Marks)

- b. With a neat sketch, explain turn-off characteristics of SCR. (06 Marks)
- C. Design the snubber circuit elements R_S and C_S connected across the SCR, given that $\frac{dv}{dt}(max) = 180 \text{V/}\mu\text{s}$ and $\frac{di}{dt}(max) = 45 \text{A/}\mu\text{s}$. An inductor L = 0.1 H and a resistance $R < R_S$ are in series with the SCR with a 300V, DC applied to the circuit. (08 Marks)
- 4 a. With a neat diagram and waveforms, explain the principle of single phase full converter purely resistive load. Derive the expression for voltage output and rms output voltage.
 - b. For the converter shown in Fig.Q.4(b) has a purely resistive load of R and the delay angle is $\alpha = \pi/2$ determine: i) the rectification efficiency; ii) the form factor; iii) ripple factor (RF); iv) the TUF; v) PIV of thyristor. (10 Marks)

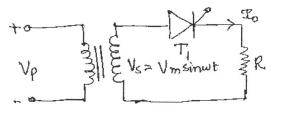


Fig.Q.4(b)

PART-B

- 5 a. Explain the self commutation with the help of neat sketch and obtain the expression for the capacitor voltage and current. (08 Marks)
 - b. Compare natural and forced commutation.

(04 Marks)

- c. With the necessary circuit diagram and waveforms, explain the operation of a complimentary commutation. (08 Marks)
- 6 a. What are the application of AC voltage controller?

(04 Marks)

- b. With the help of circuit diagram explain the operation of single phase AC regulator using ON-OFF control. Derive the expression for rms value of load voltage. (08 Marks)
- c. A single phase AC voltage controller with R-L load has the following details. Supply voltage = 230V, 50Hz, $R = 4\Omega$ and $WL = 3\Omega$, calculate:
 - i) The control range of firing angle.
 - ii) The maximum value of RMS load current.
 - iii) The maximum power and power factor.
 - iv) The maximum values of average and RMS thyristor current.

(08 Marks)

- 7 a. Give the classification of choppers. Explain class E-chopper with circuit and quadrant diagram. (06 Marks)
 - b. With the help of neat circuit diagram and waveforms. Explain the working principle of a step-up chopper. (06 Marks)
 - c. A step down chopper is operating at a frequency at 2kHz from a 250V dc source to supply a load resistance of 12Ω . The time constant of the load circuit is 10ms. If the average load voltage is 150V, calculate: i) The ON-time t_{ON} of the chopper; ii) The average and rms values of load current and iii) the peak to peak ripple current. (08 Marks)
- 8 a. What do you mean by inverters? Explain the principle operation of 1-φ half bridge inverter.

(08 Marks)

b. Write and explain the performance parameter of an inverter.

Highlycorfider

(06 Marks)

c. With a neat, circuit diagram explain the variable DC link inverter.

(06 Marks)

* * * *