ATME

Sixth Semester B.E. Degree Examination, Dec.2016/Jan.2017 **Micro Electronic Circuits**

Time: 3 hrs. Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- Define the following parameters with respect to MOSFET:
 - i) Threshold voltage; ii) Overdrive voltage.

(05 Marks)

b. Explain the breakdown effect occurs in MOSFET.

- (05 Marks)
- c. Draw the biasing circuit using a drain to gate feedback resistor and explain it. (05 Marks)
- d. For the circuit shown in Fig.Q.1(d), find the values of R and V_D to obtain a current I_D of 80 μA . Let the NMOS transistor have $V_t = 0.6 V$, μ_n $C_{ox} = 200$ $\mu A/V^2$, L = 0.8 μm and $W = 4 \mu m$. Assume $\lambda = 0$. (05 Marks)

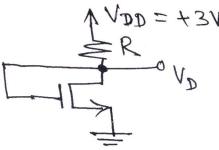


Fig.Q.1(d)

- What are the disadvantages due to short-channel effects? (05 Marks)
 - The high frequency response of an amplifier is characterized the TF

$$F_{\rm H}(s) = \frac{1 - \frac{s}{10^5}}{\left(1 + \frac{s}{10^4}\right) \left(1 + \frac{s}{4 \times 10^4}\right)}.$$
 Determine the 3-dB frequency. (05 Marks)

What is current steering? Mention its advantages.

(05 Marks)

Draw the circuit of basic MOSFET current source and explain it.

(05 Marks)

Draw the circuit and small signal equivalent circuit of common source amplifier with active 3 a.

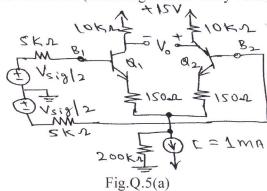
What is cascade amplifier and mention the basic idea behind the cascade amplifier?

load and explain it. b.

(06 Marks)

C. Draw the circuit of double cascading and explain it. (06 Marks)

(08 Marks)


- a. Draw the transistor pairing circuits and mention the advantages of each pair. 4
 - b. Draw the circuit of cascade MOS current mirror and explain it.

(06 Marks) (06 Marks)

Explain the operation of a MOS differential pair with a common mode input voltage and mention the relevant equations. (08 Marks)

PART – B

- 5 a. The differential amplifier shown in Fig.Q.5(a) uses transistors with $\beta = 100$. Evaluate:
 - i) Input differential resistance (R_{id}).
 - ii) Overall differential voltage gain V_o/V_{sig} (neglect the effect of V_o).
 - iii) CMRR in dB. (Assume $A_{cm} = 5 \times 10^{-4}$).
 - iv) Input common mode resistance (assuming that the early voltage $V_A = 100 V$. (10 Marks)

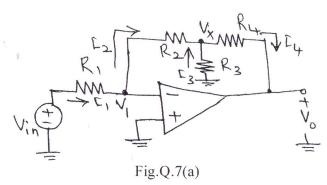
b. Draw the two-stage CMOS Op-Amp circuit and explain it.

(10 Marks)

6 a. Explain the properties of negative feedback.

(10 Marks)

b. Explain the effect of feedback on the amplifier stability and pole location.


(07 Marks)

c. What are the properties of current amplifier?

(03 Marks)

7 a. Derive the expression for the closed loop gain V_o/V_{in} of the circuit shown in Fig.Q.7(a).

(08 Marks)

- b. With the help of mathematical analysis, explain how to minimize the temperature effect in logarithmic amplifier. (10 Marks)
- c. What are DC imperfections?

(02 Marks)

8 a. Obtain the PUN from the PDN and vice versa for the following expressions:

i)
$$Y = \overline{A(B + CD)}$$

ii)
$$Y = \overline{A}(B + AC)$$

(12 Marks)

- b. Define the following parameters with respect to CMOS:
 - i) Propagation delay
 - ii) Robustness
 - iii) Delay power product
 - iv) Dynamic power dissipation.

(08 Marks)

* * * *