Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Fifth Semester B.E. Degree Examination, June/July 2016 Fundamentals of CMOS VLSI

Time: 3 hrs.

Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- a. Discuss latch-up in a p-well CMOS structure and its remedies. With neat figure explain twin tub CMOS process steps. (10 Marks)
 - b. For an NMOSFET, the following details are available $\mu n = 500 \text{cm}^2/\text{V-se}$, $(V_a V_{tn}) = 2.6 \text{V}$ $t_{ox} = 100 \text{ Å}$. Calculate Rn of the device if $w = 100 \mu m L = 0.5 \mu m$. (05 Marks)
 - c. Deduce an equation for figure of merit of MOS transistor. Fnd the operating frequency f_o in the following condition $\mu n = 125 \text{cm}^2/\text{v-sec}$, $L = 2 \mu m$, $V_{gs} = 2V$ and $\mu_{tn} = 1V$. (05 Marks)
- 2 a. What are the uses of stick diagram? Give the table of color and monochrome stick encoding for simple single metal NMOS process. (07 Marks)
 - b. Draw the CMOS circuit diagram, stick diagram and symbolic diagram of Boolean function $F = \overline{wx + yz}$. (06 Marks)
 - c. What do you mean by λ based design rule? Explain λ based design rules applicable to MOS layers and transistors. (07 Marks)
- a. With neat circuit diagram explain the following: (i) A simple BiCMOS inverter and (ii) An improved BiCMOS inverter with no static current flow and better output logic levels.
 (10 Marks)
 - b. Draw and explain the basic structure of dynamic CMOS logic and discuss the charging sharing problem in this structure. (10 Marks)
- 4 a. What are the most commonly used scaling models? Provide scaling factors for (i) power dissipation per gate (ii) Gate delay (iii) current density and (iv) speed power product. (10 Marks)
 - b. For the given multilayer structure shown in Fig. Q4(b) calculate the total capacitance.

Fig. Q4(b)

PART - B

5	a.	Obtain switch logic arrangements for (i) $V_{out} = V_1A + V_2B + V_3C$ using 3 w switch and (ii) 3 input nMOS OR gate.	yay selector (10 Marks)	
	b.	Draw and explain 4:1 MUX using transmission gate.	(05 Marks)	
	C.	Explain with neat figure, non – inverting dynamic storage cells using CMOS to gate switch.	ransmission (05 Marks)	
6	a.	a. With the help of logic expressions explain how to implement arithmetic logic oper		
		with a standard adder.	(10 Marks)	
	b.	Explain with neat diagram the 4×4 cross bar switch.	(10 Marks)	
7	a.	With neat figure explain transistor dynamic RAM cell.	(06 Marks)	
	b.	Describe the CMOS pseudo static memory cell with neat figure.	(06 Marks)	
	C.	Explain read and write operations in dynamic memory cell.	(08 Marks)	
8		Write short notes on:		
	a.	Input/output pads	(05 Marks)	
	b.	Test and Testability.	(05 Marks)	
	c.	Level sensitive scan design and	(05 Marks)	
	d.	Built in self test (BIST).	(05 Marks)	