| ilce                 |  |
|----------------------|--|
| rac                  |  |
| alp                  |  |
| as m                 |  |
| -                    |  |
| reate                |  |
|                      |  |
| ll De I              |  |
| <b>=</b>             |  |
| 20,                  |  |
| ll l                 |  |
| 1 2+2+               |  |
|                      |  |
| SÚ.                  |  |
| written              |  |
| WILL                 |  |
| 2                    |  |
| Idilo                |  |
| equations            |  |
| 5                    |  |
| 9                    |  |
| 3                    |  |
| udio                 |  |
| a la                 |  |
| to evaluator and /or |  |
| =                    |  |
| 24                   |  |
| 2                    |  |
|                      |  |
| ICa.                 |  |
|                      |  |
|                      |  |
| 5                    |  |
| 10                   |  |
| B                    |  |

USN

10EC44

## Fourth Semester B.E. Degree Examination, June 2012 Signals and Systems

Time: 3 hrs.

Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

## PART - A

1 a. Give a brief classification of signals.

(04 Marks)

b. Check whether the following systems are linear, causal and time invariant or not.

$$i)\frac{d^{2}y\left(t\right)}{dt^{2}}+2y\left(t\right)\frac{dy\left(t\right)}{dt}+3\,t\,y(t)\,=\,x(t)\qquad \ ii)\,y\left(n\right)=x^{2}\left(n\right)+\frac{1}{x^{2}\left(n-1\right)}.\tag{08 Marks}$$

c. Classify the following signals or energy signals or power signals:

i)  $x(n) = 2^n u(-n)$  ii)  $x(n) = (j)^n + (j)^{-n}$ .

(05 Marks)

d. A system consists of several sub-systems connected as shown in Fig.Q(1) d. Find the operator H relating x (t) to y (t) for the following sub-system operators:

$$\begin{array}{ll} H_1: y_1 \ (t) = x_1 \ (t) \ x_1 \ (t-1) \\ H_2: y_2 \ (t) = \left| \ x_2 \ (t) \ \right| \\ \end{array} \qquad \begin{array}{ll} H_3: \ y \ (t) = 1 + 2 \ x_3 \ (t) \\ H_4: \ y_4 \ (t) = \cos \left( \ x_4 \ (t) \ \right). \end{array} \qquad \begin{array}{ll} (03 \ Marks) \\ \end{array}$$



2 a. Find the continuous-time convolution integral given below:

 $Y(t) = \cos(\pi t) \{u(t+1) - u(t-3)\} * u(t).$ 

(06 Marks)

b. Consider the i/p signal x (n) and impulse responses (n) given below:

$$x(n) = \begin{cases} 1, & 0 \le n \le 4 \\ 0, & \text{otherwise} \end{cases}, \qquad h(n) = \begin{cases} \alpha^n & 0 \le n \le 6 \\ 0, & \text{otherwise} \end{cases}.$$

Obtain the convolution sum y(n) = x(n) \* h(n).

(08 Marks)

c. Derive the following properties:

i)  $x(n) \times h(n) = h(n) \times x(n)$  ii)  $x(n) \times [h(n) \times g(n)] = [x(n) \times h(n)] \times g(n)$ . (06 Marks)

**3** a. For each impulse response listed below, determine whether the corresponding system is memoryless, causal and stable:

i)  $h(n) = (0.99)^n u(n+3)$  ii)  $h(t) = e^{-3t} u(t-1)$ . (08 Marks)

b. Evaluate the step response for the LTI system represented by the following impulse response: h(t) = u(t+1) - u(t-1). (04 Marks)

c. Draw direct form I implementation of the corresponding systems:

$$\frac{d^{2} y(t)}{dt^{2}} + 5 \frac{d}{dt} y(t) + 4 y(t) = x(t) + 3 \frac{d}{dt} x(t).$$
 (04 Marks)

1 of 4





10EC44

d. Determine the forced response for the system given by:

$$5 \frac{dy(t)}{dt} + 10 y(t) = 2 x(t)$$
, with input x(t) = 2 u(t).

(04 Marks)

a. State and prove time shift and periodic time convolution properties of DTFS.
b. Evaluate the DTFS representation for the signal x (n) shown in Fig.Q4(b) and sketch the

spectra. (08 Marks)

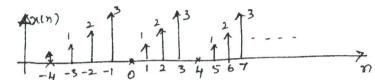



Fig.Q4(b)

c. Determine the time signal corresponding to the magnitude and phase spectra shown in Fig.Q4(c), with  $W_0 = \pi$ . (06 Marks)

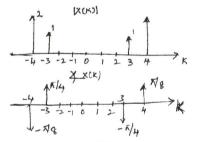


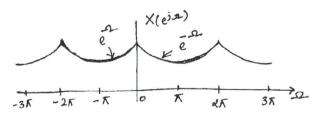

Fig.Q4(c)

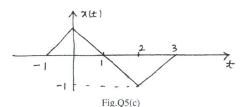
## PART - B

5 a. State and prove the frequency-differentiation property of DTFT.

(06 Marks) (05 Marks)

b. Find the time-domain signal corresponding to the DTFT shown in Fig.Q5(b).





Fig.Q5(b)

2 of 4

## 10EC44

- c. For the signal x (t) shown in Fig.Q 5(c), evaluate the following quantities without explicitly computing x (w).

  - i)  $\int x(w) dw$  ii)  $\int |x(w)|^2 dw$  iii)  $\int x(w) e^{j2w} dw$ .



6 a. The input and output of causal LTI system are described by the differential equation.

$$\frac{d^{2}y(t)}{dt^{2}} + 3\frac{dy(t)}{dt} + 2y(t) = x(t)$$

- i) Find the frequency response of the system
- ii) Find impulse response of the system
- iii) What is the response of the system if  $x(t) = te^{-t}u(t)$ .

(10 Marks)

b. Find the frequency response of the RC circuit shown in Fig.Q6(b). Also find the impulse response of the circuit. (10 Marks)

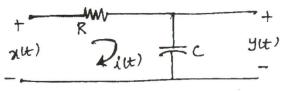



Fig.Q6(b)

7 a. Briefly list the properties of Z-Transform.

(04 Marks)

- b. Using appropriate properties, find the Z-transform  $x(n) = n^2 \left(\frac{1}{3}\right)^n u(n-2)$ . (06 Marks)
- c. Determine the inverse Z-transform of  $x(z) = \frac{1}{2 4z^4 + 2z^2}$ , by long division method of:
  - i) ROC; |z| > 1.

(04 Marks)

d. Determine all possible signals x (n) associated with Z-transform.

(06 Marks)

$$x(z) = \frac{\binom{1}{4}z^{-1}}{[1 - \binom{1}{2}z^{-1}][1 - \binom{1}{4}z^{-1}]}$$



10EC44

8 a. An LTI system is described by the equation

 $y(n) = x(n) + 0.81 \times (n-1) - 0.81 \times (n-2) - 0.45 \times (n-2)$ . Determine the transfer function of the system. Sketch the poles and zeros on the Z-plane. Assess the stability.

b. A systems has impulse response h (n)  $(\frac{1}{3})^n$  u (n). Determine the transfer function. Also determine the input to the system if the output is given by:

$$y(n) = \frac{1}{2}u(n) + \frac{1}{4}\left(-\frac{1}{3}\right)^n u(n)$$
 (05 Marks)

c. A linear shift invariant system is described by the difference equation.

$$y(n) - \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = x(n) + x(n-1)$$

with y(-1) = 0 and y(-2) = -1.

Find:

- i) The natural response of the system.
- ii) The forced response of the system and
- iii) The frequency response of the system for a step.

(10 Marks)

\* \* \* \* \*