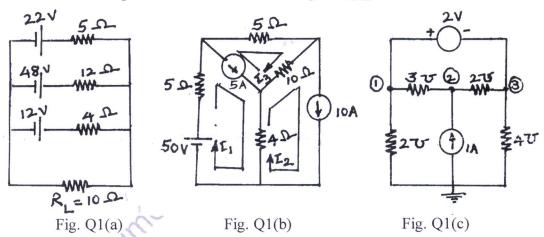
Third Semester B.E. Degree Examination, June/July 2016 **Network Analysis**

Time: 3 hrs.

Max. Marks: 100


Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

Using source transformation find current through R_L in the circuit shown in Fig. Q1(a). 1

- Using mesh current method find current through 10Ω resistor in the circuit shown in Fig. (07 Marks)
- Find all the nodal voltages in the circuit shown in Fig Q1 (c),

(07 Marks)

- With neat illustrations, distinguish between 2
 - i) Oriented and Non-oriented graphs
 - ii) Connected and un-connected graphs
 - iii) Tree and co-tree.

(06 Marks)

b. For the network shown in Fig. Q2(b), draw the oriented graph. By selecting braches 4, 5 and 6 as twigs, write down tie-set schedule. Using this tie-set schedule, find all the branch currents and branch voltages. (14 Marks)

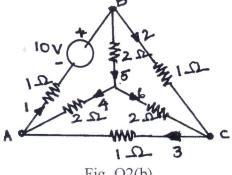
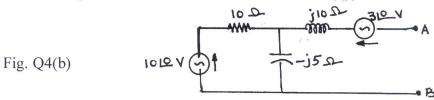


Fig. Q2(b)

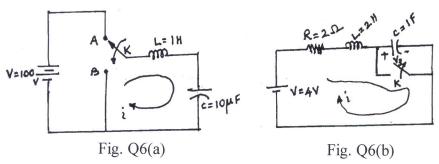

3 a. State and illustrate superposition theorem.

(05 Marks)

- b. Using superposition theorem, find value of i in the circuit shown in Fig.Q3(b). (08 Marks)
- c. Find the value of V_x in the circuit shown in Fig. Q3(c). Verify it using Reciprocity theorem.
 (07Marks)

Fig.Q3(b) $E = 10 \log A$ $A \cap A = 3 \cap A$ Fig.Q3(c)

- a. Show that the power delivered to load, when the load impedance consists of variable resistance and variable reactance is maximum when the load impedance(Z_L) is equal to complex conjugate of source impedance (Z_g). (10 Marks)
 - b. Obtain Thevenin's equivalent network of the circuit shown in Fig. Q4(b) and thereby find current through 5Ω resistor connected between terminals A and B. (10 Marks)



PART - B

- 5 a. With respect to series resonant circuit, define resonant frequency (f_r) and half power frequencies (f₁ and f₂). Also show that the resonant frequency is equal to the geometric mean of half power frequencies. (10 Marks)
 - b. A series circuit is energized by a constant voltage and constant frequency supply. Resonance takes place due to variation of inductance and the supply frequency is 300 Hz. The capacitance in the circuit is $10 \mu F$. Determine the value of resistance in the circuit if the quality factor is 5. Also find the value of the inductance at half power frequencies.

(10 Marks)

- a. In the circuit shown in Fig. Q6(a), the switch K is changed from position A to B t = 0. After having reached steady state in position A. Find i, $\frac{di}{di}$, $\frac{d^2i}{dt^2}$ and $\frac{d^3i}{dt^3}$ at $t = 0^+$. (10 Marks)
 - b. In the circuit shown in Fig. Q6(b) switch K is opened at t = 0. Find i, $\frac{di}{dt}$, V_3 and $\frac{dV_3}{dt}$ at $t = 0^+$.

(10 Marks)

Using convolution theorem find the inverse Laplace transform of following functions.

i)
$$F(s) = \frac{1}{(s-a)^2}$$
 and ii) $F(s) = \frac{1}{s(s+1)}$ (10 Marks)

b. Obtain the Laplace transform of the triangular waveform shown in Fig Q7(b). (10 Marks)

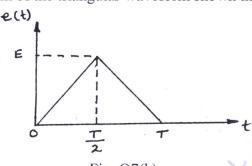


Fig. Q7(b)

- 8 Define h and T parameters of a two - port network, Also, derive the expressions for h parameters in terms of T parameters. (10 Marks)
 - Find Y and Z parameters for the network shown in Fig. Q8(b). b.

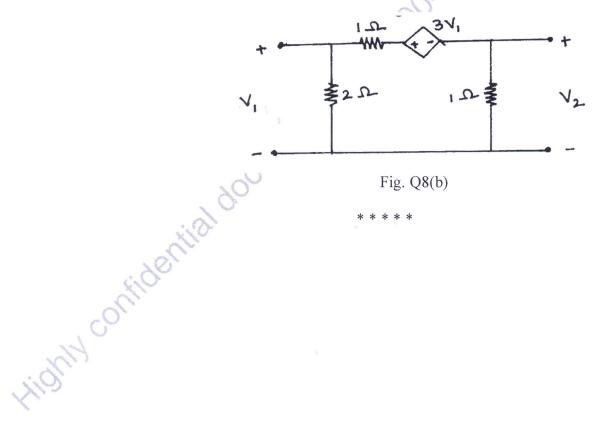


Fig. Q8(b)