Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. USN 4 4 D 1 3 E E 0 39 ## Fifth Semester B.E. Degree Examination, Dec.2015/Jan.2016 DC Machines and Synchronous Machines Time: 3 hrs. Max. Marks: 100 Note: Answer FIVE full questions, selecting at least TWO questions from each part. ## PART - A 1 a. Explain with a neat sketch, the construction of DC machine. (08 Marks) - b. What is difference between lap and wane type of armature windings? (Any four) (06 Marks) - c. A short shunt compound dc generator supplies a current of 50 A at a voltage of 200 V. Calculate the generated voltage, if the resistance of the armature, shunt and series field winding are 0.04Ω , 50Ω and 0.02Ω respectively. (06 Marks) - 2 a. Derive an expression for torque developed by an armature of a DC motor. (06 Marks) b. Explain any two method of speed control of a dc shunt motor. - (08 Marks) - c. A dc series motor developing 40 NM torque is subjected to the condition that makes field flux to decrease by 30% and armature current to increase by 15%. Calculate the new torque. (06 Marks) 3 a. Define the efficiency of DC machine and write the condition for maximum efficiency. (05 Marks) - b. With a neat sketch, explain briefly the conduction to determine the efficiency of a given DC motor by Swineburn's test. (08 Marks) - c. A 440 V, dc shunt motor rates no load current of 2.5 A, the resistance of shunt field and series field are 550Ω and 1.2Ω respectively. The full load current is 32 A. Find the full load output and efficiency of motor. (07 Marks) - 4 a. Write short notes on: i) Retardation test, ii) Field's test. (12 Marks) b. A retardation test is made on a separately excited dc machine as a motor. The induced voltage falls from 240 V to 220 V in 25 seconds on opening armature circuit and in 6 seconds on suddenly charging the armature connections from supply to a load resistance which takes on average current of 10 A. Find efficiency of machine when running on a motor taking a current of 25 A on a supply of 250 V. The resistance of the armature is 0.3Ω and that the field winding is 200Ω . ## PART - B - 5 a. Explain the detail of the constructional features of a three phase alternator. (08 Marks) - b. Derive the expression for pitch factor and distribution factor. (06 Marks) - c. A 3φ, 50 Hz, 10 pole alternator has 90 slots. The flux/pole is 0.15 web, if the winding is to be star connected to give a line voltage of 11000 V. Find the number of armature conductors to be connected in series/phase. - 6 a. Define voltage regulation. With a neat circuit diagram, explain briefly conduction of z.p.f. (Potier) method in laboratory to obtain regulation of alternator. (10 Marks) - b. A 1200 KVA, 6600 V, 3 phase star connected alternator has its armature resistance on $0.25\Omega/\text{phase}$ and its synchronous reactance as 5 Ω/phase . Calculate its regulation if it delivers a full load (i) at 0.8 p.f. lagging, (ii) 0.8 p.f. leading. (10 Marks) (05 Marks) - 7 Write the expression synchronizing power for salient pole machine. - Mention advantages of parallel operation and condition to be satisfied for successful operation of 3 phase alternators. (08 Marks) - A 10 MVA, 3 phase alternator has an equivalent short circuit reactance 20%, calculate the synchronizing power of the armature/mechanical degree/phase displacement, when running in parallel on 10000 V, 50 Hz bus bar at 1500 rpm. (07 Marks) - Explain briefly Blondal diagram. (06 Marks) b. Explain '\' and '\' curves on synchronous motor. (06 Marks) c. A 230 V, 3φ star connected synchronous motor has a resistance of 0.2 Ω/phase and synchronous reactance of 2.2 Ω /phase. The motor is operating at 0.5 pf leading with a line phase of the confidential document in con current of 200 A. Determine the value of generated emf/phase. (08 Marks)