2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Third Semester B.E. Degree Examination, June/July 2016 **Network Analysis**

Time: 3 hrs.

Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- 1 a. Using source transformation find current through R_L in the circuit shown in Fig. Q1(a).
 - b. Using mesh current method find current through 10Ω resistor in the circuit shown in Fig. Q1(b). (07 Marks)
 - c. Find all the nodal voltages in the circuit shown in Fig Q1 (c).

(07 Marks)

- 2 a. With neat illustrations, distinguish between
 - i) Oriented and Non-oriented graphs
 - ii) Connected and un-connected graphs
 - iii) Tree and co-tree.

(06 Marks)

b. For the network shown in Fig. Q2(b), draw the oriented graph. By selecting braches 4, 5 and 6 as twigs, write down tie-set schedule. Using this tie-set schedule, find all the branch currents and branch voltages. (14 Marks)

3 a. State and illustrate superposition theorem.

(05 Marks)

- b. Using superposition theorem, find value of i in the circuit shown in Fig.Q3(b). (08 Marks)
- c. Find the value of V_x in the circuit shown in Fig. Q3(c). Verify it using Reciprocity theorem. (07Marks)

24v Fig.Q3(b)

- 4 a. Show that the power delivered to load, when the load impedance consists of variable resistance and variable reactance is maximum when the load impedance(Z_L) is equal to complex conjugate of source impedance (Z_g). (10 Marks)
 - b. Obtain Thevenin's equivalent network of the circuit shown in Fig. Q4(b) and thereby find current through 5Ω resistor connected between terminals A and B. (10 Marks)

PART – B

- 5 a. With respect to series resonant circuit, define resonant frequency (f_r) and half power frequencies (f₁ and f₂). Also show that the resonant frequency is equal to the geometric mean of half power frequencies.

 (10 Marks)
 - b. A series circuit is energized by a constant voltage and constant frequency supply. Resonance takes place due to variation of inductance and the supply frequency is 300 Hz. The capacitance in the circuit is $10 \mu F$. Determine the value of resistance in the circuit if the quality factor is 5. Also find the value of the inductance at half power frequencies.

(10 Marks)

- a. In the circuit shown in Fig. Q6(a), the switch K is changed from position A to B t = 0. After having reached steady state in position A. Find i, $\frac{di}{di}$, $\frac{d^2i}{dt^2}$ and $\frac{d^3i}{dt^3}$ at $t = 0^+$. (10 Marks)
 - b. In the circuit shown in Fig. Q6(b) switch K is opened at t = 0. Find i, $\frac{di}{dt}$, V_3 and $\frac{dV_3}{dt}$ at $t = 0^+$.

Fig. Q6(b)

Using convolution theorem find the inverse Laplace transform of following functions.

i)
$$F(s) = \frac{1}{(s-a)^2}$$
 and ii) $F(s) = \frac{1}{s(s+1)}$

(10 Marks)

b. Obtain the Laplace transform of the triangular waveform shown in Fig Q7(b).

Fig. Q7(b)

- Define h and T parameters of a two port network. Also, derive the expressions for h 8 parameters in terms of T parameters. (10 Marks)
 - Find Y and Z parameters for the network shown in Fig. Q8(b).

(10 Marks)

Fig. Q8(b)