USN

10MAT11

First Semester B.E. Degree Examination, June 2012 **Engineering Mathematics - I**

Max. Marks:100 Time: 3 hrs.

Note: 1. Answer any FIVE full questions, choosing at least two from each part.

- 2. Answer all objective type questions only on OMR sheet page 5 of the answer booklet.
- 3. Answer to objective type questions on sheets other than OMR will not be valued.

- 1 a. Choose your answers for the following:
 - i) The nth derivative of cos²x is

A)
$$2^{n-1}\cos(2x+\frac{n\pi}{2})$$
 B) $2^{n}\cos(2x+\frac{n\pi}{2})$ C) $2^{n-1}\cos(2x+n\pi)$ D) $2^{n-1}\cos(\frac{n\pi}{2})$

- ii) The value of C of the Cauchy mean value theorem for $f(x) = e^x$ and $g(x) = e^{-x}$ in
 - A) $\frac{5}{2}$ B) $\frac{3}{2}$ C) $\frac{9}{2}$ D) $\frac{1}{2}$

- iii) Find the nth derivative of $y = x^{n-1} \log x$ is
 - A) $y_n = \frac{(n+1)!}{x}$ B) $y_n = \frac{n!}{x}$
- C) $y_n = \frac{(n-1)!}{x}$ D) $y_n = \frac{n!}{x^2}$
- iv) Maclaurin's series expansion of log (1 + x) is

A)
$$x + \frac{x^2}{2} + \frac{x^3}{5} + \dots$$

A)
$$x + \frac{x^2}{2} + \frac{x^3}{5} + \dots$$
 B) $x - \frac{x^2}{3} + \frac{x^4}{5} - \dots$

C)
$$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{5} + \dots$$
 D) $x + \frac{x^2}{3} + \frac{x^3}{16} + \dots$

D)
$$x + \frac{x^2}{3} + \frac{x^3}{16} + \dots$$
 (04 Marks)

b. By informing in two different ways the nth derivative of x^{2n} , prove that

$$1 + \frac{n^2}{1^2} + \frac{n^2(n-1)^2}{1^2 \times 2^2} + \frac{n^2(n-1)^2(n-2)^2}{1^2 \times 2^2 \times 3^2} + \dots = \frac{(2n)!}{(n!)^2}$$
 (06 Marks)

- c. Verify Rolle's theorem for the function $f(x) = \frac{\sin 2x}{a^{2x}}$ in $\left| 0, \frac{\pi}{2} \right|$
- d. Using Maclaurin's series, expand $\log \sec x$ upto the term containing x^6 . (06 Marks)
- 2 a. Choose your answers for the following:
 - i) The value of $\lim_{x \to \infty} \frac{\log x}{x}$ is
 - A) 0
- C) 2
- D) -2
- ii) If s is the arc length of the curve x = f(y) then $\frac{ds}{dy}$ is
- A) $\sqrt{1+y_1^2}$ B) $\sqrt{1+y_1}$ C) $\sqrt{1+\left(\frac{dx}{dy}\right)^2}$

(04 Marks)

- iii) Pedal equation to the curve $\frac{2a}{r} = 1 \cos \theta$ is A) $P = ar^2$ B) $P^2 = a^2r$
- C) $P^2 = a^2 r^2$
- iv) The angle between two curves $r = ae^{\theta}$ and $re^{\theta} = b$ is

- D) π (04 Marks)

1 of 4

10MAT11

2 b. For the curve $y = \frac{ax}{a + x}$, if ρ is the radius of curvature at any point (x, y), show that:

$$\left(\frac{2\rho}{a}\right)^{2_3} = \left(\frac{y}{x}\right)^2 + \left(\frac{x}{y}\right)^2$$

(06 Marks)

c. Evaluate $\lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{1} x^2$.

(04 Marks)

d. Find the angle between the curves $r = \frac{a}{1 + \cos \theta}$; $r = \frac{b}{1 - \cos \theta}$. (06 Marks)

3 a. Choose your answers for the following:

i) When
$$u = y^2 log \left(\frac{x}{y}\right)$$
 then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ is

ii) The Taylor's series of f(x, y) = xy at (1, 1) is

A) 1 + [(x-1) + (y-1)]

B) 1 + [(x-1) + (y-1)] + [(x-1)(y-1)]

D) 3u

C) [(x-1)(y-1)]D) None of these

iii) The Jacobian of transformation from the Cartesian to polar coordinates system is $C) r^2$ B)r

C) 2u

- iv) The rectangular solid of maximum volume which can be inscribed in a sphere is A) parallelogram B) rectangle C) cube D) triangle. (04 Marks)
- b. Examine the function $\sin x + \sin y + \sin(x + y)$ for extreme values. (06 Marks)
- c. Find the possible error in percent in computing the parallel resistance 'r' of two resistances r_1 and r_2 from the formula $\frac{1}{r}=\frac{1}{r_i}+\frac{1}{r_s}$ are both in error by 2%. (04 Marks)

d. If $z(x + y) = x^2 + y^2$ show that $\left[\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} \right]^2 = 4 \left[1 - \frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} \right]$ (06 Marks)

4 a. Choose your answers for the following:

i) A gradient of the scalar point function ϕ that is $\nabla \phi$ is A) vector function B) scalar function C) zero

ii) The directional derivative of $f(x, y, z) = x^2yz + 4xz^2$ at the (1, -2, -1) in the direction PQ where P = (1, 2, -1), Q = (-1, 2, 3) is

D) $\frac{20}{\sqrt{6}}$

D) 0

iii) If \overline{R} is the position vector of any point P(x, y, z) then $\nabla \cdot \overline{R}$ is C) 2

B) -3A) 3 iv) If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ then $Curl \vec{r} = \dots$

B) 1

(C) -1D) oo (04 Marks) b. Find the constants a and b such that $\overline{F} = (axy + z^3)i + (3x^2 - z)j + (bxz^2 - y)k$ is irrotational

and find scalar potential function ϕ such that $F = \nabla \phi$. (06 Marks)

c. Prove that $\nabla x \left[\frac{ax}{r^n} \right] = \frac{-a}{r^3} + \frac{3(a.r)r}{r^5}$

(04 Marks)

d. Prove that the cylindrical coordinates system is orthogonal.

(06 Marks)

2 of 4

PART - B

- 5 a. Choose your answers for the following:
 - i) The value of $\int x^2 (1-x^2)^{3/2} dx$ is
 - A) $\frac{\pi}{23}$ B) $\frac{1}{32}$ C) $\frac{\pi}{32}$ D) $\frac{\pi}{16}$ ii) The tangent to the curve $y^2=4ax$ at origin is

- A) y-axis C) both x-axis and y-axis
- B) x-axis
- D) does not exist
- iii) The value of $\int \sin^4 \left(\frac{x}{2}\right) dx$ is
- C) $\frac{3\pi}{16}$ D) $\frac{3\pi^2}{8}$

- iv) The surface area of the sphere of radius 'a' is
 - A) $4\pi a^2$
- B) $4\pi^2$ a

D) $2\pi a^{2}$ (04 Marks)

b. Obtain the reduction formula for $\sin^m x \cos^n x dx$.

- (06 Marks)
- c. Evaluate $\int_{\frac{x}{2}(1+x^2)}^{\frac{x}{2}} dx$ using the method of differentiation under integral sign.
- d. Find the area of the loop of the curve $ay^2 = x^2(a x)$.

(06 Marks)

- 6 a. Choose your answers for the following:
 - i) The solution of the differential equation $\frac{dy}{dx} = e^{x+y}$ is

- A) $e^{x} + e^{-y} = c$ B) $e^{-x} + e^{-y} = c$ C) $e^{x} + e^{y} = c$ D) $e^{x+y} = c$ ii) If the homogeneous differential equation $\frac{dy}{dx} = \frac{f_1(x, y)}{f_2(x, y)}$ the degree of the

homogeneous functions $f_1(x, y)$ and $f_2(x, y)$ are

A) different

B) same

C) relatively prime

- D) degree of $f_1(x, y) >$ degree of $f_2(x, y)$
- iii) The integrating factor of the differential equation $(1 + x^2) \frac{dy}{dx} + xy = \sin h^{-1}x$ is A) $\frac{1}{\sqrt{1+x^2}}$ B) $\sqrt{1-x^2}$ C) $\sqrt{1+x^2}$ D) $\frac{x}{\sqrt{1+x^2}}$

- iv) If replacing $\frac{dy}{dx}$ by $-\frac{dx}{dy}$ in the differential equation $f\left(x,y,\frac{dy}{dx}\right)=0$ we get the differential equation of
 - A) polar trajectory

- B) orthogonal trajectory
- C) parametric trajectory
- D) parallel trajectory
- (04 Marks)
- b. Solve $(1 + xy^2) \frac{dy}{dx} = 1$. (06 Marks)
- c. Solve $\frac{dy}{dx} = \frac{x(2\log x + 1)}{\sin y + y\cos y}$

(04 Marks)

d. Find the orthogonal trajectory of $r^n = a^n \sin n\theta$

(06 Marks)

3 of 4

- 7 a. Choose your answers for the following:
 - i) In a system of linear equations if the rank of the co-efficient matrix = rank of the augmented matrix = n number of unknowns then the system has
 - A) no solutions

- B) unique solutions
- C) infinite number of solutions
- D) trivial solutions
- The rank of matrix $\begin{bmatrix} 2 & -1 & 3 & 1 \\ 1 & 4 & -2 & 1 \\ 5 & 2 & 4 & 3 \end{bmatrix}$ is
 - A) 3
- D) 5
- iii) A square matrix in which aij = aji for all i and j then it is called a
 - A) unique matrix B) symmetric matrix C) skew symmetric D) triangular matrix
- iv) The inverse of the square matrix A is
 - A) | A |
- B) $\frac{\text{adj } A}{|A|}$
 - C) adj A

C) 2

- D) $\frac{|A|}{\text{adj }A}$ (04 Marks)
- b. Investigate for what value of λ and μ the simultaneous equation x + y + z = 6, x + 2y + 3z = 10, $x + 2y + \lambda z = \mu$ have

 - i) no solutions ii) unique solutions
- iii) infinite number of solutions. (06 Marks)
- c. Apply Gauss-elimination method to solve the following equations:
 - 2x y + 3z = 1, -3x + 4y 5z = 0, x + 3y 6z = 0
- (04 Marks)

d. Find the rank of $\begin{vmatrix} 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \end{vmatrix}$.

(06 Marks)

- 8 a. Choose your answers for the following
 - i) The eigen values of the matrix $\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ are
 - A) 2, 3, 8
- B) 2, 2, 8
- C) 8, 4, 3
- D) 2, -2, 8
- ii) A homogeneous expression of the second degree in any number of variables is called a A) quadratic form B) diagonal form C) symmetric form D) spectral form
- iii) A square matrix A of order 3 has 3 linearly independent eigen vectors then a matrix P can be found such that P⁻¹ AP is a
- A) diagonal matrix B) symmetric matrix C) unit matrix D) singular matrix
- iv) If the eigen vector is (1, 1, 1) then its normalized form is
 - A) $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$ B) $\left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right)$
 - C) $\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$
- (04 Marks)
- b. Reduce $6x^2 + 3y^2 4xy 2yz + 4zx$ into canonical form.
- (06 Marks)
- c. Find all the eigen values for the matrix, $A = \begin{bmatrix} 7 & -2 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & 5 \end{bmatrix}$. (04 Marks)
- d. Reduce the matrix, $A = \begin{bmatrix} 11 & -4 & 7 \\ 7 & -2 & -5 \\ 10 & -4 & -6 \end{bmatrix}$ into a diagonal matrix. (06 Marks)
 - 4 of 4